第350章 激光(1/4)
赵飞扬和刘祖训周围围坐着一群来自国内顶尖科研机构的光学专家,投影仪上闪烁着非线性光学晶体材料复杂的微观结构和深紫外激光技术的前沿理论。“这非线性光学晶体材料可是深紫外激光源实用化的关键,其面临的挑战不容小觑。”赵飞扬推了推眼镜,表情凝重地打破沉默,目光在众人脸上扫视,“目前我们在晶体生长的质量控制和效率提升方面,还有很长的路要走。”
刘祖训微微点头,补充道:“没错,就像我们之前攻克的那些难题一样,这次的晶体材料生长条件极为苛刻,对温度、压力和化学环境的细微变化都极为敏感。哪怕是最微小的偏差,都可能导致晶体内部缺陷增多,严重影响其光学性能。”
资深晶体材料专家李教授也发表了自己的看法:“从现有的研究来看,我们需要探索全新的晶体生长方法和掺杂技术。传统的工艺已经难以满足深紫外激光对晶体材料高纯度、高均匀性和特定光学非线性系数的要求。”
赵飞扬看着李教授,问道:“那李教授,您在这方面有什么具体的思路或者前期研究成果可以分享吗?我们需要从各个可能的方向寻找突破口。”
李教授思考片刻,回答道:“我们团队一直在尝试采用高温高压溶液法结合分子束外延技术来生长晶体。通过精确控制溶液的成分和温度梯度,以及分子束的流量和能量,有可能实现对晶体生长过程的精细调控。但是,这两种技术的结合难度极大,在实验过程中遇到了很多问题,比如晶体的成核速率难以控制,容易出现多晶现象,导致晶体质量参差不齐。”
这时,年轻的研究员小王提出了一个问题:“在晶体生长过程中,如何实时监测晶体的内部结构和缺陷形成呢?只有及时了解这些信息,我们才能针对性地调整工艺参数。”
光学检测专家张博士回应道:“我们可以利用同步辐射 X 射线衍射技术和高分辨率显微镜成像技术相结合的方法。同步辐射 X 射线具有高亮度、高准直性和连续波长的特点,可以穿透晶体并提供其内部结构的详细信息;高分辨率显微镜则可以直接观察晶体表面的微观形貌和缺陷。通过这两种技术的协同作用,我们能够较为全面地掌握晶体生长过程中的动态变化。”
赵飞扬眼睛一亮,说道:“这个思路很新颖,值得深入研究。我们可以马上组织一个小组,专门负责搭建这样的监测系统,并结合晶体生长实验进行验证。”
在讨论完晶体材料问题后,大家的焦点又转移到了激光晶体加工的挑战上。
“激光晶体的加工精度和表面质量直接关系到深紫外激光的输出性能。”刘祖训说道,“目前的加工工艺在超精密切割、研磨和抛光方面还存在很多不足,难以满足深紫外激光对晶体表面平整度和粗糙度的严格要求。”
机械加工专家陈教授接过话茬:“我们需要研发更加先进的加工设备和工艺。例如,采用纳米级精度的金刚石刀具进行切割,利用原子级平整度的研磨盘进行研磨,并结合化学机械抛光技术来实现晶体表面的超光滑处理。但是,这些设备和工艺的研发需要大量的资金和时间投入,而且对操作人员的技术水平要求极高。”
赵飞扬建议道:“我们可以联合国内相关领域的优势企业和科研机构,共同开展这方面的研发工作。通过产学研合作的方式,整合各方资源,加快研发进度。同时,我们也要积极申请国家的科研项目支持,确保有足够的资金保障。”
在讨论过程中,大家还提到了装备研制的难题。
“深紫外激光源